Phenomenon Computational Pattern: coupling
relationship between phenomena on multi-physics

simulation

Felix C. G. Santos
José M. A. Barbosa
Eduado R. de Brito Jr
Federal University of Pernambuco

Department of Mechanical Engineering
Rua Académico Hélio Ramos, s/n - Recife - PE 50740-530 - Brazil

Abstract— Simulation of natural phenomena, such as the
evaluation of temperature and air flow distribution inside
a room, evaluation of material damage due to mechanical
and chemical loads, are crucial in the daily life of engi-
neers. This paper presents the Computational Phenomena
Pattern, whose objective is to standardize - through a com-
putational abstraction - the complex interaction of coupled
natural phenomena in the context of the Finite Element
Method. The pattern makes it intuitive and easier the rep-
resentation of data sharing and dependence between dif-
ferent interacting phenomena when developing simulators
based on the Finite Element Method. The pattern models
natural phenomena data, the involved processes and their
relationships, which are used in a typical simulation process.

Keywords— Finite Element Method, Multi-physics simula-
tion

I. INTRODUCTION

Computational Mechanics has had a profound impact on
science and technology over the past three decades. The
Computational Mechanics software industry generates sev-
eral billions of dollars per year [1]. The success of Com-
putational Mechanics is due to its effectiveness in solving
problems that interest society and in providing deeper un-
derstanding of natural phenomena (facts, which occur in
nature, like motion of material points and heat transfer in
a continuum). Computational mechanics has a tremendous
predictive power, making it possible the simulation of com-
plex natural events and the further use of these simulations
in the design of engineering systems [1]. However, in many
aspects, it still applies software engineering development
techniques related to the seventies. The consequence is
that there are few reliable and effective tools for simulators
development support and new developments in numerical
methods become difficult to introduce in the existing simu-
lators. This work is part of an effort to overcome this diffi-
culty in which concerns to the development of an environ-
ment - called PLEXUS - dedicated to the automatic devel-
opment of multi-physics and multi-scale simulators based
on the Finite Element Method. We define multi-physics as
a qualifier for a set of interacting phenomena, in space and
time. These phenomena are usually of different natures
(deformation of solids, heat transfer and electromagnetic
fields) and may be defined by different scales of behavior

Proceedings 20th European Conference on Modelling and Simulation
Wolfgang Borutzky, Alessandra Orsoni, Richard Zobel © ECMS, 2006
ISBN 0-9553018-0-7 /ISBN 0-9553018-1-5 (CD)

(macro and micro mechanical behavior of materials). A
multi-physics system is also called a coupled phenomena
system.

The Finite Element Method is a technique for the dis-
cretization of phenomena, whose behavior is determined
by variables defined on a continuum (space and time). For
instance, assume that a given phenomenon is defined by a
function u : @ - R, u € H, where Q C R", n > 1,is a
bounded geometric domain and H is an appropriate space
of functions. Suppose that u satisfies a behavior law (a
partial differential equation and boundary conditions, for
example) L(u) = f, where £ : H — Y’ is a differential
operator and f €)’ is given.) is a vector space and)’ is
its dual space. Based on that PDE, an equivalent integral
formulation (weak form) is then obtained through a bivari-
ate form Bq : H X Y — R such that Bq(u,v) = Lo (v), for
all v € Y, where Lg : YV — R is a linear functional. This
is the initial setting for the finite element discretization
techniques.

Basically speaking, the major processes, which composes
a simulation by the FEM are:

a) Mesh generation process: the building of an ap-
proximation, €, to the exact geometric domain .
by the union of a set, 75, of closed simple geometric en-
tities (edges, triangles, quadrilaterals, tetrahedrals, hexa-
hedrals). 75, is called the geometric mesh. Each simple
geometric entity e € 73 is called a finite element.

b) Discrete weak form process: finite dimensional
spaces Sy and Sy are defined in such a way that an ap-
proximation to the original weak form can be defined as
Bqg, (up,vn) = Lq, (vg), for all vy, € Sy, where up, € Sy is
the approximation to the exact solution u; Bq, : Sy x Sy
and Lg, : Sy are approximations to Bg and Lgq, respec-
tively. up, is defined by a finite set of parameters U, which
are the basically unknowns of the problem. The discrete
weak form represents a system (called global) of algebraic
equations in U. If the system is linear in u, then the result-
ing global system will be a linear algebraic system, defined
by a matrix K and a vector F. In this case, it can be shown
that K and F can be assembled from small matrices and
vectors, which are computed based on restrictions of Bq,
and Lg, to each finite element e € 7,. Even when the
problem is nonlinear, the solution process usually consid-

ers the solution of linearized systems. Therefore we may
consider that each phenomenon contributes with a certain
number of small matrices and vectors, which are computed
at the element level.

c) Solution algorithm process: it means one among
many ways of performing the desired simulation, that is,
solving the global algebraic system of equations, obtain-
ing the real vector U. It is important to collect the set of
all ways a solution algorithm uses the matrices and vec-
tors computed by a phenomenon. This set can be used
in the definition of a standard interface between solution
algorithms and phenomena during a simulation.

d) Visualization process: this process comprises the
computation of quantities to be visualized and the visual-
ization procedures itself. The data of interest to the user
may not be the output itself (vector U, for the example
above) of the solution procedure, but a function of it. Also,
the format and data size of the solution output may not be
compatible with the software used in the visualization. In
those cases the quantities to be visualized are obtained by
a posterior process, which should be an important part of
the simulator.

If the example described above is a part of a multi-
physics system, it means that Bg and Lg may be depen-
dent on vector fields from other phenomena. If that is
the case, the computation of small matrices and vectors at
the finite element level (item (b) above) depends on data
from other phenomena - that is, it is coupled to other phe-
nomena. Other type of data dependence is the case where
two or more phenomena are defined on the same geometry
component and share the geometric mesh.

The Phenomenon Pattern is restricted to the represen-
tation of data and processes, which can be computed at
the finite element level. It does not deal with abstractions
neither for the Solution Algorithm Process nor for the Vi-
sualization Process. Therefore it is concerned to:

i) The ways in which the discrete weak form components
Bg, and Lgq, restricted to a generic finite element can be
computationally represented. This means that the Phe-
nomenon Pattern provides abstractions such that: (a) all
data pertinent to the computation of the small matrices
and vectors at the finite element level can be represented;
(b) all data dependence and sharing with respect to other
phenomena can be taken into consideration in a standard-
ized form.

ii) Those procedures contained in the Solution Algorithm
process, mainly in what regards the way it requires from a
phenomenon the computation and assembling of the small
matrices and vectors at the finite element level. Therefore,
the Phenomenon Pattern presents an interface, which de-
fines the ways it can be used by any solution algorithm
during a simulation.

Particularly, the Phenomenon pattern represents an ab-
straction of the collection of commonalities found in the
various ways the processes related to a phenomenon can
be used by a solution algorithm in the context of the FEM.
A further objective with such an abstraction is to make the
representation of data sharing and dependence between dif-
ferent phenomena more intuitive and easier.

Before we go any further with our developments, it is
important to acknowledge that the computation of matri-
ces and vectors depends on a number of choices like, for
instance, distribution of the order of approximation of the
vectors fields over the mesh, definition of basis for the dis-
crete spaces, numerical integration schemes, etc. Although
the dealing with all those pieces of data are considered
within the Phenomenon Pattern, we will not focus on this
aspect, since it is not the more troublesome one. Instead,
we will stress the relationship established by Phenomenon
objects with each other, during the computation of coupled
quantities, and with the solution algorithm (the software
environment outside the set of Phenomenon objects).

This work presents some results obtained by researchers
of the PLEXUS Project. The main objective of the
PLEXUS project is the development of simulators for
multi-physics and multi-scale systems with strong emphasis
in reusability, maintainability and adaptability. The gen-
eral set of methods currently being considered is the one
known by the general name of the finite element method.
However, strong attempts are being pursued in the sense
of designing architectures, which could be used for other
methods as well - for instance, finite volume method [4].

II. CONTEXT

In this section we explain the difficulties in dealing with
coupled problems and devise some ways of circumventing
them. The methodology of the explanation is to simplify
the finite element method in such a way that the aspects,
which produce difficulties, are retained, but the details,
which are not relevant, are filtered out. In that direction,
we start with the description of the levels of procedures,
which can be identified during the development of simula-
tors using the FEM. They are:

i. The finite element level:

- Sub-level of the production of matrices and vectors

- Sub-level of the error estimation

- Sub-level of the post-processing
ii. The solution level, composed of:

- Sub-level of the assembling of algebraic systems and its
solution;

- Sub-level of interactions, which articulate solutions of
different algebraic systems;

- Sub-level of loops and interactions involving progression
in time and adaptation of models and discretizations.

The definition of those levels is important in the sense of
software modularisation. But it does not indicate neither
how entities belonging to different levels interact nor what
data they share or depend upon. That is certainly very
important for the definition of abstractions, which could
standardize the way those entities behave and interact. In
what concerns uncoupled problems, there are available fi-
nite element libraries, which are able of providing suffi-
cient computational representation (abstraction) power in
order to support the building of simulators in a reason-
able time and with a high degree of reusability. Unfortu-
nately, that is not true for coupled phenomena. Whenever
a phenomenon depends on data from another phenomenon,
that representation power breaks down. This is so because

those libraries do not provide abstractions neither for the
interaction between two phenomena nor for the interaction
between a phenomenon and a solution algorithm.

Actually, coupled multi-physics problems make things
very complex at both levels, that is, the finite element level
and the solution level. The abstractions used for uncou-
pled systems can not be used efficiently - in the sense of
reusability, adaptability and maintainability - in coupled
systems. Those abstractions are not fit to adequately rep-
resent the data transfer and dependency, which may occur
in coupled multi-physics problems, for one reason: there is
a strong relationship between decisions at one level (the so-
lution level) and computations at the other level (the finite
element level).

The reason why this difficulty arises can be further clari-
fied by analyzing the procedures at the lowest level, that is,
the finite element level. Those procedures are related to the
production (at each finite element) and assembling of the
corresponding matrices and vectors, for each phenomenon.
The small elemental matrices and vectors may be coupled
with other phenomena, meaning that the computations of
those quantities need pieces of information from other phe-
nomena. Those pieces of information are defined at the so-
lution level. Therefore, changing solution algorithms may
produce widely spread changes across both levels.

In order to provide a further insight, consider that a
phenomenon P; is able of computing a set of quantities
{Q;(P)};Z,. During the simulation each phenomenon has
a fixed number of predefined states, which are represented
by certain pieces of data computed during the many stages
of a simulation. Assume that a given quantity Q;(F;),
for some j, is coupled to another phenomenon Pj. The
definition of a coupling means that a certain number of
states of P, are used in the computation of Q;(F;). Assume
that Py, has the set {Sts(Py)}.% as the set of its states. P;
does not know a priori, which states of Py are to be used
in the computation of @;(F;), until the solution algorithm
determines it (at the moment it requires P; to compute
Q;(P;)). This is a choice, which may be changed whenever
a different solution algorithm is used. Suppose that only
one state is required for the computation of Q);(P;), that is,
the state St,(Py), for some r. This information is passed
to P; along with the requirement to compute Q,;(P;) and
a data structure where it should assemble it. P; should
retrieve (or be given) the state St,.(Py) and then it will able
of computing @Q;(P;) (on each finite element from the mesh)
and assembling it into the given data structure. Notice that
the decision about the state to be used in the computation
of a coupled quantity is made at a substantially higher level
than the level of the finite element. Furthermore, that state
should be retrieved in order to be used by P;. Those two
aspects produce the major difficulties, which are present
in the development of simulators for coupled phenomena.
However, there are still other requirements, which make
the problem even more intractable: (i) couplings may occur
only on a part of the geometric domain (for instance, on a
part of the boundary) or it may occur dynamically, as in
contact problems; (ii) two phenomena, which are coupled in
a geometric component may not share the geometric mesh,

meaning that the use of a coupled state by one phenomenon
needs the transfer of that state from the mesh of the other
pheonomenon to the mesh of the former.

The described difficulties generate a problem that can
be phrased as: What abstraction can adequately repre-
sent and encapsulate the information, relationships and
processes pertaining to the finite element level and which
are concerned to the numerical modeling of a natural phe-
nomenon, in order to describe and implement phenomena
abstractions in the context of coupled multi-physics sys-
tems? The next sections present a solution to this problem.

III. THE PHENOMENON PATTERN

For the purpose of simplicity of explanation, a phe-
nomenon is considered as a machine for computing small
matrices and vectors and assembling them into given large
matrices and vectors. The computation of those small ma-
trices and vectors is performed on each finite element of a
mesh. The following requirements have to be satisfied:

i) The computation of small matrices and vectors may
be related to any geometric component among the set of
geometric components, which define the physical domain
of a phenomenon (a part of the boundary, for example).
ii) Each phenomenon should have a list of quantities,
which it is able of computing.

iii) The definition of the coupled states needed for the
computation of a certain quantity of a phenomenon should
be defined only at the solution algorithm level. A phenom-
ena should not be aware of the way it is used during a
particular simulation.

iv) Two phenomena may share meshes on any common
geometric part.

v) A phenomenon is coupled to vector fields (which hap-
pens to be from other phenomenon), which have a fixed
definition (dimension, for instance). It is not a priori cou-
pled to a specified phenomenon. The definition of the cou-
plings between phenomena is delayed until the definition
of a problem data for the simulation.

The developed solution, which should satisfy the above
requirements, is the Phenomenon Pattern (called Phe-
nomenon from now on). It can be viewed as a container
with two acyclic graphs: the PhenGraph and the Geom-
Graph (see Figs. (1), (2), (3) and (4)). Both of them has
exactly the same structure as graphs, but the pieces of data
stored in each GraphNode are different from one graph
to the other. We call by PhenNode and GeomNode the
GraphNode’s from the PhenGraph and GeomGraph,
respectively. In GeomGraph the geometry data is stored
in a brep structure (boundary representation). That is,
from the root of GeomGraph to its leaves one goes from
the geometric entities of higher dimension (volumes, for in-
stance) to the lower dimension ones (points). On the other
hand, in PhenGraph one finds in each PhenNode a set
of procedures, which are to be computed on the geomet-
ric entity of the respective GeomNode. Since geometry
should be shared with other phenomena, it is important to
have such a separation between them. Each PhenNode
knows (has a reference to) its respective GeomNode and
thus has access to its data, but the converse is not true.

W JParents

Children t

GraphNode
GeomGraph
root

GeomEntity
Fig. 1. Geometry Graph
Childrent w JParents

GraphNode

PhenGraph

(from PhenGraph)

root

PhenEntity
(from PhenGraph)

Fig. 2. Phenomenon Graph

Phenomenon also contains an indexed set of quantities
Q = {Q:}~, (see QTable in Fig. (4)), which represents
the set of all quantities (small vectors and matrices) that it
is able of computing and assembling into given structures
(large matrices and vectors). Here n is the total number
of quantities the current Phenomenon can compute and
assemble. The procedures responsible for the actual com-
putation of those quantities should stored in the PhenN-
ode’s. This further implies the need for each PhenNode,
say the jt* one, to have an indexed set q; = {Qi 3, CQ
(see qTable in Fig. (4), which represents all quantities the
PhenNode j can compute.

GeomGraph

(from GeomPackage)

PhenGraph
(from PhenGraph)

Children Parents

GraphNode

(from GeomPackage)

root root|

PhenEntity GeomEntity
(rom PhenGraph)l - /(tfrom GeomPackage)
<<RelatedTo>>
PhenMesh | <cRelatedTo>> [GegmMesh

Fig. 3. Phenomenon-Geometry relationship

Each PhenNode needs some pieces of data in order to
be able of computing a certain quantity. Those pieces of
data are the following:

a) General Data (it serves all quantities):

- GeomMesh: it is the mesh of a the geometric entity
stored in a GeomNode. It is a data structure, which con-
tains all geometric finite elements (for instance, triangles,
quadrilaterals, tretrahedra, hexagons, etc; it depends on
geometric dimension and mesh generation methods used
to obtain it). It belongs to its respective GeomNode.

Children Parents

PhenGraph ’—\M/—‘ GeomGraph
@rom (Irom GeomPackage)
- GraphNode

(from GeomPackage)

root

roat
<<CoupledPhenEntities>>

PhenEntity ’7GeomEntity
oPhenEntity | b Geampectaae)
gTable PhenMesh <<RelatedTo>>
(from PhenGeomRel)

Fig. 4. Phenomenon Diagram

<<RelatedTo>>

GeomMesh
(from PhenGeomRel)

- PhenMesh: its is the mesh of the phenomenon. It
is a data structure, which contains information about the
approximation of the phenomenon’s vector field on each
geometric finite element (for instance, the order of a poly-
nomial approximation). It is strongly related to the Ge-
omMesh.

b) Specific Data (it is specific to a certain quantity) for a
quantity Qj,, k=1,...,n;:

- CoupledPhenNodes; = {Cjks}:i’“l: it is the set of
GraphNodes pertaining to other phenomena. They are
used in order to obtain data from other phenomena, which
are important in the computation of @), .

- CoupledStates; = {Sjksr}:g'f : it is the set of states,
which should be retrieved from the CoupledGraphNode
Cj,.- Those states usually represent discrete vector fields.

Obs: It should be noted that the use (by a certain phe-
nomenon) of a vector field from other phenomenon raises
a number of issues. The main issue is the possibility that
both GeomMeshes may be different. Due to lack of space
we do not consider this important problem in detail in this
work. What we should say is that we usually build Phe-
nomenon derived classes, which are specially tailored for
the task of transferring data from one mesh to the other.
Such a Phenomenon has the following characteristics:

- It shares the GeomGraph with the coupler Phe-
nomenon.

- The root of its PhenGraph has only the quantities
needed for the transfer of data.

- Each quantity cited above is coupled to the respective
GraphNode from the PhenGraph of the coupled phe-
nomenon.

- Each quantity to be computed need only one coupled
state - the state to be transfered.

- The PhenMesh from the coupled phenomenon is also
needed, in order to obtain values of the coupled vector field
in any desired point.

- Finally, there is a need for a search structure in order
to find the finite element in the mesh of the coupled phe-
nomenon, which contains a given point. This is important
in order to perform integration procedures in one mesh us-
ing data from the other.

Now we come to the problem where data needed by
procedures in a lower level (computation of quantities in
each finite element) is defined at a higher level (the owner
of Phenomenon objects). Before going directly to this
point, it is better to explain how objects Phenomenon
are used.

Phenomenon classes are supposed to be strongly
reusable. They are very detailed pieces of software and
contains information, which can be used in many different
contexts and geometries. In order to achieve that state
we had to make allow for the definition about the coupled
states to be done dynamically at run time. That definition
depends on the solution algorithms used in the simulation.
The simulator is here considered as a pattern [3], [5], [10],
which is - simply speaking - a workflow in the form of a
tree and divided into four layers (see levels of procedures
defined in Section(IT)):

- Kernel: set of procedures related to algorithmic struc-
tures for the control of loops and interactions involving
progression in time and adaptation models and discretiza-
tions;

- Block: set of procedures related to the articulation of
solutions of different algebraic systems;

- Group: set of procedures related to the assembling and
solution of algebraic systems, together with the execution
of diverse operations with matrices and vectors.

- Phenomenon: encapsulates the set of procedures re-
lated to the production of small matrices and vectors and to
their assembling in given larger data structures. It also per-
forms other computations related to post-processing and
error estimation.

Simulator

Kernel

Block

Phenomenon
(from Phenomenon)

Group

Fig. 5. Simulator Diagram

The simulation starts with the execution of the root
of the Kernel, which uses services provided by a set of
Blocks, which in turn uses services from a set of Groups.
Each Group owns a set of Phenomenon objects, which
are used to perform the production small matrices and vec-
tors, assembling them into given (by its Group) larger data

DataStructures

Group

(from Simulator)

QPhenTables

Phenomenon
(from Phenomenon)

Procedures

Fig. 6. Group Diagram

structures. The intention of this work is not going too far
in the explanation of the details of the interactions between
objects across the levels of the Simulator Pattern (see Fig.
(5)). Before we proceed further with the description of the
lowest level - represented by the Phenomenon Pattern -
we need some pieces of information about the structure of
Group classes (see Fig. (6)):

- It has a set of indexed data structures (see DataStruc-
tures in Fig. (6)), which can be shared upon demand by
its own Phenomenon objects.

- It has a set of tables, which can be dynamically pro-
grammed in order to contain information about the com-
putation of matrices and vectors, which Phenomenon ob-
jects contribute to them and how they should do it (that
is, which Phenomenon quantities are to be used and, for
each one of them, what are their coupled states)

Therefore the Groups level is the level where definitions
about the coupled states take place and are conveyed to
each Phenomenon object during a demand for the com-
putation of a certain quantity. The coding of the software
components for a Group class needs previous knowledge
about the set of indexed data structures from all other
Group classes. Because of that feature, a Group class is
much less reusable than the classes from the other levels.
Whenever a solution algorithm is changed, many Group
classes may need to be eliminated from the simulators.
However, all Phenomenon classes should have been im-
plemented in such a way that no modification at all will
take place. Some minor reprogramming of Block and Ker-
nel procedures, but their coding as a set of procedures
articulated as workflows will accommodate that without
much work.

Now we are in a position to describe in a more detailed
fashion the usage of a Phenomenon (call it P) object by
its owner, that is, a Group object (call it G):

- G is asked (by its Block) to compute a certain quantity
Qg'

- G retrieves from one of its tables the references to
all Phenomenon objects, which contribute to Q,. P is
among them.

- G retrieves from another table a set of data for each
contributing Phenomenon object. This set of data for
the i‘"-object contains information such as: (I) a set
at; = {q; ;-l;l, containing all quantities from the it"-
Phenomenon, which contributes to form Q,; (II) for each
;. aset CS;;, = {Sijk}ZZp containing the coupled states
to be used in its computation - the order in which those
states are given is important, since it they may be from
different phenomena; (III) a reference to a data structure
(say K,) where the quantity should be assembled.

- Suppose, now, that P is given a demand to compute a
certain quantity @Q,, together with a set of indexes for the
coupled states, say CS,, = {Sp,, };2, and a reference to
K,.

- Then, P transfer the demand to its PhenGraph, which
in turn send it to its root (say R).

- R checks if it is able of computing the desired quantity.
If so, it sends the demand to one of its objects (say W),
which is responsible for the computation and assembling
of @,. R sends, together with the data already defined, a
set of references, say CG, to the respective GraphNodes
from the PhenGraphs of the coupled Phenomenon ob-
jects.

- ‘W retrieves the set of coupled PhenMeshs (say, CPM)
and the respective set of discrete vector fields (say VF)
from the respective set of coupled GraphNodes. This is
done by sending a request for the states contained in CS,,
to the respective GraphNodes contained in CG. Each
coupled GraphNode from CG is able of asking its owner
Group for the desired state and sending it back to W.

- W traverse the PhenMesh (given by R) together with
the coupled ones (contained in CPM) and is able of com-
puting, for each finite element, the quantity @, - using the
coupled discrete vector fields (contained in VF) - and of
assembling them into K.

- If R is not able of computing the desired quantity, or
if it has already computed it, it will transfer the demand
recursively to its children GraphNodes together with the
same data it received. The process goes on recursively,
until there are no children GraphNodes to be reached.

Obs: Note that, in the description of the computation of
Q, vy R, we have considered that all PhenMesh objects
(that given by R and those contained in CPM) share the
same GeomMesh object. Therefore they could be tra-
versed at the same time. |

IV. CONCLUSIONS

We have presented a pattern called Phenomenon in or-
der to cope with the difficulties found in the development of
simulators for coupled multi-physics problems. It was iden-
tified that the solution algorithms employed by the simula-
tors provide data at a higher level, which determines many
procedures at a lower level. Thus, small changes in the
solution algorithm could generate the need for widespread
changes along the simulator software, implying in strong
reprogramming. A separation of concerns was important
to identify that the simulator could be divided into four

well defined hierarchical levels. The part of a solution al-
gorithm where pieces of data are generated to be used at
a lower level was concentrated at a level called the Group
level. The part at a lower level where those pieces of data
are used was identified as the Phenomenon level. An ab-
straction for the computational representation of the Phe-
nomenon level was described as a pattern. It was shown
that his pattern (Phenomenon Pattern) represents ade-
quately all data pertaining to the discrete behavior laws of
a phenomenon (production of small matrices and vectors),
together with the needed sharing and transfer of data be-
tween Phenomenon objects and between Phenomenon
objects and the solution algorithms. An important con-
sequence was that all information and procedures, which
are very specific of a solution algorithm (less reusable)
are encapsulated in the Group level, while all informa-
tion and procedures, which are strongly are encapsulated
in the Phenomenon level. Experiences with prototypes
have shown a tremendous improvement in: (i) the time
spent in the development of simulators; (ii) the reusability
of software components, opening the way for the building of
repositories; (iii) the correctness of software components.
References of previous and related work can be found in
[5)-[10]

REFERENCES

[1] Committee on Theoretical and Applied Mechanics, Research
Directions in Computational Mechanics. A report of the
United States Association for Computational Mechanics, 2000.
Available at http://www.usacm.org/org_cm.htm, accessed on
10/01/2004.

[2] Viceconti, M., Replication of Numerical Studies. Personal Com-
munication, posted at biomch-1@nic.surfnet.nl. Sent on: March
27, 2002 3:03 pm Subject: BIOMCH-L: BioNet controversial
topic no. 5.

[3] Santos, F.C.G., Lencastre, M., Vieira, M. GIG-Pattern. The
Third Latin American Conference on Pattern Languages of Pro-
gramming, Pernambuco, Brazil, 2003.

[4] Lencastre, M., ”Conceptualisation of an Environment for the
Development of FEM Simulators”, Ph.D. thesis, Centro de In-
formtica, Universidade Federal de Pernambuco, Brazil, 2004.

[5] Lencastre, M.; Santos, F., ”An Approach for FEM Simulator
Development”; Journal of Computational Computational and
Applied Mathematics, Vol. 185, issue 2, 2006.

[6] Lencastre, M.; Santos, F.; Arajo, J., ”A Process Model for FEM
Simulation Support Development. Proceedings of the Summer
Computer Simulation Conference (SCSC 02), San Diego, Cali-
fornia, 2002.

[7] Lencastre, M.; Santos, F.; Rodrigues, I., ”"FEM Simulator based
on Skeletons for Coupled Phenomena”. Proceedings of the 2nd
Latin American Conference on Pattern Languages of Program-
ming (SugarLoafPLoP’2002 Conference), pp.35-48, Brazil, 2002.

[8] Lencastre, M.; Santos, F.; Rodrigues 1., ”FEM Simulation En-
vironment for Coupled Multi-physics Phenomena”, - Simulation
and Planning In High Autonomy Systems, AIS2002; Theme: To-
ward Component-Based Modeling and Simulation. pp. 259-266.
A publication of the Society for Modeling and Simulation Inter-
national, Portugal, 2002.

[9] Lencastre, M.; Santos F.; Vieira, M., ”Workflow for Simula-
tors based on Finite Element Method”. Proceedings of the In-
ternational Conference on Computational Science (ICCS 2003),
Melbourne, Australia and Saint Petersburg, Russia. 1(2), pp.
555-565, Springer Verlag, 2003.

[10] Lencastre, M.; Santos, F.; Vieira, M., " GIG-Pattern”. Proceed-
ings of the 3rd Latin American Conference on Pattern Languages
of Programming (SugarLoafPLoP’2003), pp. 293-307, Pernam-
buco, Brazil, 2003.

	c0: Proceedings 20th European Conference on Modelling and Simulation
Wolfgang Borutzky, Alessandra Orsoni, Richard Zobel © ECMS, 2006
ISBN 0-9553018-0-7 / ISBN 0-9553018-1-5 (CD)

